Ibrahim, M.M.M., Kandil, A., Zahra, W.K., Elsaid, A.: Elimination of the vibration center shift in the nonlinear oscillations of a MAGLEV vehicle subjected to steady and unsteady aerodynamic forces: Second-order multiple scales analysis. ZAMM - J. Appl. Math. Mech. / Zeitschrift für Angew. Math. und Mech. 105, e70125 (2025). https://doi.org/https://doi.org/10.1002/zamm.70125
Arafa, A.A., Hamdallah, S.A.A., Kandil, A.: Mathematical Modeling of Threshold Strategy in Fishery Management. Math. Methods Appl. Sci., 48: 12528-12549. (2025). https://doi.org/10.1002/mma.11043
Desoky, E., Kamel, M., Kandil, A.: Primary, superharmonic and subharmonic resonances control of an oscillatory cantilever beam excited transversely at its free end. Afrika Mat. 36, 91 (2025). https://doi.org/10.1007/s13370-025-01305-w
Abdelraouf, M.E., Kandil, A., Zahra, W.K., Elsaid, A.: Analyzing MEMS resonator static pull-in and dynamics under electric excitation via position feedback controller. Phys. Scr. 100, 0152a2 (2025). https://doi.org/10.1088/1402-4896/ada06a
Kandil, A., Francis, A.C., Elsaid, A., Zahra, W.K.: Effect of the suspended block’s weight on the nonlinear dynamics of a non-ideal magnetic levitation model connected to an energy harvester. Int. J. Non. Linear. Mech. 170, 104974 (2025). https://doi.org/10.1016/j.ijnonlinmec.2024.104974
Pappoe, J.A., Akimasa, Y., Kandil, A., Mahrous, A.: Machine learning techniques for estimation of Pc5 geomagnetic pulsations observed at geostationary orbits during solar cycle 23. J. Atmos. Solar-Terrestrial Phys. 260, 106258 (2024). https://doi.org/10.1016/j.jastp.2024.106258
Francis, A.C., Zahra, W.K., Elsaid, A., Kandil, A.: Improvement of the Non-periodic Energy Harvesting Behavior of a Non-ideal Magnetic Levitation System Utilizing Internal Resonance. J. Vib. Eng. Technol. (2024). https://doi.org/10.1007/s42417-024-01364-6
Yi, H., Hou, L., Jin, Y., Saeed, N.A., Kandil, A., Duan, H.: Time series diffusion method: A denoising diffusion probabilistic model for vibration signal generation. Mech. Syst. Signal Process. 216, 111481 (2024). https://doi.org/10.1016/j.ymssp.2024.111481
Kandil, A., Hou, L., Sharaf, M., Arafa, A.A.: Configuration angle effect on the control process of an oscillatory rotor in 8-pole active magnetic bearings. AIMS Math. 9, 12928–12963 (2024). https://doi.org/10.3934/math.2024631
Pappoe, J.A., Yoshikawa, A., Kandil, A., Mahrous, A.: A machine learning approach combined with wavelet analysis for automatic detection of Pc5 geomagnetic pulsations observed at geostationary orbits. Adv. Sp. Res. (2023). https://doi.org/10.1016/j.asr.2023.11.001
Kandil, A., Hamed, Y.S.: Integral Resonant Controller for Suppressing Car’s Oscillations and Eliminating its Inherent Jump Phenomenon. Eur. J. Pure Appl. Math. 16, 2729–2750 (2023). https://doi.org/10.29020/nybg.ejpam.v16i4.4930
Kandil, A., Hamed, Y.S., Awrejcewicz, J., Saeed, N.A.: Multiple Time-Scales Analysis to Predict the Quasiperiodic Oscillatory Response of a Thin-Walled Beam Subjected to 1:1:1 Simultaneous Resonance. Shock Vib. 2023, 6616922 (2023). https://doi.org/10.1155/2023/6616922
Kandil, A., Hamed, Y.S., Awrejcewicz, J.: Harmonic Balance Method to Analyze the Steady-State Response of a Controlled Mass-Damper-Spring Model. Symmetry (Basel). 14, 1247 (2022). https://doi.org/10.3390/sym14061247
Kandil, A., Hamed, Y.S., Mohamed, M.S., Awrejcewicz, J., Bednarek, M.: Third-Order Superharmonic Resonance Analysis and Control in a Nonlinear Dynamical System. Mathematics. 10, 1282 (2022). https://doi.org/10.3390/math10081282
Kandil, A., Hamed, Y.S., Abualnaja, K.M., Awrejcewicz, J., Bednarek, M.: 1/3 Order Subharmonic Resonance Control of a Mass-Damper-Spring Model via Cubic-Position Negative-Velocity Feedback. Symmetry (Basel). 14, 685 (2022). https://doi.org/10.3390/sym14040685
Kandil, A., Hamed, Y.S., Alsharif, A.M., Awrejcewicz, J.: 2D and 3D visualizations of the mass-damper-spring model dynamics controlled by a servo-controlled linear actuator. IEEE Access. 9, 153012 - 153026 (2021). https://doi.org/10.1109/access.2021.3126868
Saeed, N.A., Kandil, A.: Two different control strategies for 16-pole rotor active magnetic bearings system with constant stiffness coefficients. Appl. Math. Model. 92, 1–22 (2021). https://doi.org/10.1016/j.apm.2020.11.005
Kandil, A., Hamed, Y.S., Alsharif, A.M.: Rotor active magnetic bearings system control via a tuned nonlinear saturation oscillator. IEEE Access. 9, 133694–133709 (2021). https://doi.org/10.1109/ACCESS.2021.3114356
Hamed, Y.S., Kandil, A: Influence of Time Delay on Controlling the Non-Linear Oscillations of a Rotating Blade. Symmetry (Basel). 13, (2021). https://doi.org/10.3390/sym13010085
Kandil, A., Hamed, Y.S.: Tuned positive position feedback control of an active magnetic bearings system with 16-poles and constant stiffness. IEEE Access. 9, 73857-73872 (2021). https://doi.org/10.1109/access.2021.3080457
Hamed, Y.S., Kandil, A., Machado, J.T.: Utilizing Macro Fiber Composite to Control Rotating Blade Vibrations. Symmetry (Basel). 12, (2020). https://doi.org/10.3390/sym12121984
Kandil, A.: Investigation of the whirling motion and rub/impact occurrence in a 16-pole rotor active magnetic bearings system with constant stiffness. Nonlinear Dyn. 102, 2247–2265 (2020). https://doi.org/10.1007/s11071-020-06071-x
Kandil, A.: Internal resonances among the first three modes of a hinged–hinged beam with cubic and quintic nonlinearities. Int. J. Non. Linear. Mech. 127, 103592 (2020). https://doi.org/10.1016/j.ijnonlinmec.2020.103592
Kandil, A.: Study of Hopf curves in the time delayed active control of a 2DOF nonlinear dynamical system. SN Appl. Sci. 2, (2020). https://doi.org/10.1007/s42452-020-03614-0
Kandil, A., Sayed, M., Saeed, N.A.: On the nonlinear dynamics of constant stiffness coefficients 16-pole rotor active magnetic bearings system. Eur. J. Mech. A/Solids. 84, 104051 (2020). https://doi.org/10.1016/j.euromechsol.2020.104051
Saeed, N.A., Kandil, A.: Lateral vibration control and stabilization of the quasiperiodic oscillations for rotor-active magnetic bearings system. Nonlinear Dyn. 98, 1191–1218 (2019). https://doi.org/10.1007/s11071-019-05256-3
Kandil, A., Kamel, M.: Vibration control of a compressor blade using position and velocity feedback. Int. J. Acoust. Vib. 24, 97–112 (2019). https://doi.org/10.20855/ijav.2019.24.11270
Kandil, A., El-Ganaini, W.A.: Investigation of the time delay effect on the control of rotating blade vibrations. Eur. J. Mech. A/Solids. 72, 16–40 (2018). https://doi.org/10.1016/j.euromechsol.2018.03.007
Kandil, A., El-Gohary, H.A.: Suppressing the nonlinear vibrations of a compressor blade via a nonlinear saturation controller. JVC/Journal Vib. Control. 24, 1488–1504 (2018). https://doi.org/10.1177/1077546316661680
Kandil, A., El-Gohary, H.: Investigating the performance of a time delayed proportional–derivative controller for rotating blade vibrations. Nonlinear Dyn. 91, 2631–2649 (2018). https://doi.org/10.1007/s11071-017-4036-6
Kandil, A., Eissa, M.: Improvement of positive position feedback controller for suppressing compressor blade oscillations. Nonlinear Dyn. 90, 1727–1753 (2017). https://doi.org/10.1007/s11071-017-3761-1
El-Ganaini, W.A., Kandil, A., Eissa, M., Kamel, M.: Effects of delayed time active controller on the vibration of a nonlinear magnetic levitation system to multi excitations. JVC/Journal Vib. Control. 22, 1257–1275 (2016). https://doi.org/10.1177/1077546314536753
Eissa, M., Kandil, A., Kamel, M., El-Ganaini, W.A.: On controlling the response of primary and parametric resonances of a nonlinear magnetic levitation system. Meccanica. 50, 233–251 (2015). https://doi.org/10.1007/s11012-014-0069-9
Eissa, M., Kandil, A., El-Ganaini, W.A., Kamel, M.: Vibration suppression of a nonlinear magnetic levitation system via time delayed nonlinear saturation controller. Int. J. Non. Linear. Mech. 72, 23–41 (2015). https://doi.org/10.1016/j.ijnonlinmec.2015.02.012
Eissa, M., Kandil, A., El-Ganaini, W.A., Kamel, M.: Analysis of a nonlinear magnetic levitation system vibrations controlled by a time-delayed proportional-derivative controller. Nonlinear Dyn. 79, 1217–1233 (2014). https://doi.org/10.1007/s11071-014-1738-x
Kamel, M., Kandil, A., El-Ganaini, W.A., Eissa, M.: Active vibration control of a nonlinear magnetic levitation system via Nonlinear Saturation Controller (NSC). Nonlinear Dyn. 77, 605–619 (2014). https://doi.org/10.1007/s11071-014-1323-3