Ali Kandil

Dr.
ali.kandil@ejust.edu.eg

Personal Info

B9 - F2 - 17

ACM

Dr. Ali Kandil received his M.Sc. and Ph.D. degrees in vibration control of nonlinear dynamical systems from the Faculty of Electronic Engineering, Menoufia University, in 2014 and 2018, respectively. He is currently working as an Assistant Professor of engineering mathematics. His current research interests include vibration control, nonlinear dynamics, bifurcation theory, and stability theory.


Impacted Journal

1- Kandil, A., Hamed, Y.S., Awrejcewicz, J.: Harmonic Balance Method to Analyze the Steady-State Response of a Controlled Mass-Damper-Spring Model. Symmetry (Basel). 14, (2022). https://doi.org/10.3390/sym14061247 2- Kandil, A., Hamed, Y.S., Mohamed, M.S., Awrejcewicz, J., Bednarek, M.: Third-Order Superharmonic Resonance Analysis and Control in a Nonlinear Dynamical System. Mathematics. 10, 1282 (2022). https://doi.org/10.3390/math10081282 3- Kandil, A., Hamed, Y.S., Abualnaja, K.M., Awrejcewicz, J., Bednarek, M.: 1/3 Order Subharmonic Resonance Control of a Mass-Damper-Spring Model via Cubic-Position Negative-Velocity Feedback. Symmetry (Basel). 14, (2022). https://doi.org/10.3390/sym14040685 4- Kandil, A., Hamed, Y.S., Alsharif, A.M., Awrejcewicz, J.: 2D and 3D visualizations of the mass-damper-spring model dynamics controlled by a servo-controlled linear actuator. IEEE Access. 9, 153012 - 153026 (2021). https://doi.org/10.1109/access.2021.3126868 5- Saeed, N.A., Kandil, A.: Two different control strategies for 16-pole rotor active magnetic bearings system with constant stiffness coefficients. Appl. Math. Model. 92, 1–22 (2021). https://doi.org/https://doi.org/10.1016/j.apm.2020.11.005 6- Kandil, A., Hamed, Y.S., Alsharif, A.M.: Rotor active magnetic bearings system control via a tuned nonlinear saturation oscillator. IEEE Access. 9, 133694–133709 (2021). https://doi.org/10.1109/ACCESS.2021.3114356 7- Hamed, Y.S., Kandil, A: Influence of Time Delay on Controlling the Non-Linear Oscillations of a Rotating Blade. Symmetry (Basel). 13, (2021). https://doi.org/10.3390/sym13010085 8- Kandil, A., Hamed, Y.S.: Tuned positive position feedback control of an active magnetic bearings system with 16-poles and constant stiffness. IEEE Access. 9, 73857-73872 (2021). https://doi.org/10.1109/access.2021.3080457 9- Hamed, Y.S., Kandil, A., Machado, J.T.: Utilizing Macro Fiber Composite to Control Rotating Blade Vibrations. Symmetry (Basel). 12, (2020). https://doi.org/10.3390/sym12121984 10- Kandil, A.: Investigation of the whirling motion and rub/impact occurrence in a 16-pole rotor active magnetic bearings system with constant stiffness. Nonlinear Dyn. 102, 2247–2265 (2020). https://doi.org/10.1007/s11071-020-06071-x 11- Kandil, A.: Internal resonances among the first three modes of a hinged–hinged beam with cubic and quintic nonlinearities. Int. J. Non. Linear. Mech. 127, 103592 (2020). https://doi.org/10.1016/j.ijnonlinmec.2020.103592 12- Kandil, A.: Study of Hopf curves in the time delayed active control of a 2DOF nonlinear dynamical system. SN Appl. Sci. 2, (2020). https://doi.org/10.1007/s42452-020-03614-0 13- Kandil, A., Sayed, M., Saeed, N.A.: On the nonlinear dynamics of constant stiffness coefficients 16-pole rotor active magnetic bearings system. Eur. J. Mech. A/Solids. 84, 104051 (2020). https://doi.org/10.1016/j.euromechsol.2020.104051 14- Saeed, N.A., Kandil, A.: Lateral vibration control and stabilization of the quasiperiodic oscillations for rotor-active magnetic bearings system. Nonlinear Dyn. 98, 1191–1218 (2019). https://doi.org/10.1007/s11071-019-05256-3 15- Kandil, A., Kamel, M.: Vibration control of a compressor blade using position and velocity feedback. Int. J. Acoust. Vib. 24, 97–112 (2019). https://doi.org/10.20855/ijav.2019.24.11270 16- Kandil, A., El-Ganaini, W.A.: Investigation of the time delay effect on the control of rotating blade vibrations. Eur. J. Mech. A/Solids. 72, 16–40 (2018). https://doi.org/10.1016/j.euromechsol.2018.03.007 17- Kandil, A., Eissa, M., Kamel, M., El-Ganaini, W., El-Gohary, H.: Actively controlling a rotating blade vibrations excited by a superharmonic force. Menoufia J. Electron. Eng. Res. 27, 321–332 (2018). https://doi.org/10.21608/mjeer.2018.65894 18- Kandil, A., El-Gohary, H.A.: Suppressing the nonlinear vibrations of a compressor blade via a nonlinear saturation controller. JVC/Journal Vib. Control. 24, 1488–1504 (2018). https://doi.org/10.1177/1077546316661680 19- Kandil, A., El-Gohary, H.: Investigating the performance of a time delayed proportional–derivative controller for rotating blade vibrations. Nonlinear Dyn. 91, 2631–2649 (2018). https://doi.org/10.1007/s11071-017-4036-6 20- Kandil, A., Eissa, M.: Improvement of positive position feedback controller for suppressing compressor blade oscillations. Nonlinear Dyn. 90, 1727–1753 (2017). https://doi.org/10.1007/s11071-017-3761-1 21- El-Ganaini, W.A., Kandil, A., Eissa, M., Kamel, M.: Effects of delayed time active controller on the vibration of a nonlinear magnetic levitation system to multi excitations. JVC/Journal Vib. Control. 22, 1257–1275 (2016). https://doi.org/10.1177/1077546314536753 22- Eissa, M., Kandil, A., Kamel, M., El-Ganaini, W.A.: On controlling the response of primary and parametric resonances of a nonlinear magnetic levitation system. Meccanica. 50, 233–251 (2015). https://doi.org/10.1007/s11012-014-0069-9 23- Eissa, M., Kandil, A., El-Ganaini, W.A., Kamel, M.: Vibration suppression of a nonlinear magnetic levitation system via time delayed nonlinear saturation controller. Int. J. Non. Linear. Mech. 72, 23–41 (2015). https://doi.org/10.1016/j.ijnonlinmec.2015.02.012 24- Eissa, M., Kandil, A., El-Ganaini, W.A., Kamel, M.: Analysis of a nonlinear magnetic levitation system vibrations controlled by a time-delayed proportional-derivative controller. Nonlinear Dyn. 79, 1217–1233 (2014). https://doi.org/10.1007/s11071-014-1738-x 25- Kamel, M., Kandil, A., El-Ganaini, W.A., Eissa, M.: Active vibration control of a nonlinear magnetic levitation system via Nonlinear Saturation Controller (NSC). Nonlinear Dyn. 77, 605–619 (2014). https://doi.org/10.1007/s11071-014-1323-3

International Conference

N/A

Funded Research Grants

N/A

Non Impacted Journal

N/A

National Conference

N/A

Courses Teaching

Undergraduate courses: Calculus - Analytical Geometry - Mechanics - Linear Algebra - Linear Differential Equations - Laplace Transform - Special Functions - Multiple Integrals - Linear Programming - Fourier Analysis - Linear Difference Equations - Numerical Analysis - Z Transform - Probability theory - Statistical Analysis. Postgraduate courses: Equations of Mathematical Physics - Nonlinear Differential Equations - Advanced Numerical Analysis - Differential Geometry - Integral Equations - Advanced Linear Algebra - Partial Differential Equations.

Non Regular Seminars

N/A

Other Technical Publications

N/A N/A